³⁹Ti εp decay (28.5 ms) **2001Gi01,2007Do17**

Type Author Citation Literature Cutoff Date
Full Evaluation Jun Chen NDS 152, 1 (2018) 30-Sep-2017

Parent: ${}^{39}\text{Ti}$: E=0; J^{π} =(3/2+); $T_{1/2}$ =28.5 ms 9; $Q(\varepsilon p)$ =16970 SY; % εp decay=93.7 28

 39 Ti-J^{π},T_{1/2}: From Adopted Levels of 39 Ti. T_{1/2} is adopted from 2007Do17. Others: 31 ms +6-4 (2001Gi01), 26 ms +8-7 (1990De43).

³⁹Ti-Q(εp): 16970 200 (syst, 2017Wa10).

 39 Ti-%εp decay: %εp=93.7 28 from 2007Do17. Other: 85 15 (1990De43). Delayed 2 proton decay observed by 1992Mo15.

2001Gi01 (also 2001Gi02,2002Ch28): ³⁹Ti source was produced in fragmentation of E=74.5 MeV ⁵⁸Ni beam from GANIL on a natural Ni target. Fragments were selected with the Alpha spectrometer and the LISE3 separator and implanted into a silicon telescope. Measured delayed protons, decay-time distribution. Deduced parent T_{1/2}, IAS for ³⁹Sc. Report four proton groups.

2007Do17: 39 Ti source was produced via fragmentation of 58 Ni beam at 74.5 MeV/nucleon on a natural Ni target at SISSE/LISE3 facility in GANIL. Fragments were separated by the fragment separator α -LISE3, identified by energy loss, residual energy and time-of-flight measured using two micro-channel plate (MCP) detectors and Si detectors, and implanted into double-sided silicon-strip detectors (DSSSD) and a thick Si(Li) detector to detect implanted events, charged particles and β particles. γ rays were detected by four Ge detectors. Measured E(p), I(p), E γ , I γ , p γ -coin, decay time distribution. Deduced levels, β -delayed proton emission probabilities, 39 Ti half-life. Report two proton groups.

Others

1990De43: ³⁹Ti produced in ⁵⁸Ni(⁵⁸Ni,X) reaction at 65 MeV/nucleon. Measured β-delayed protons, T_{1/2}. No evidence found for delayed two-proton decay.

1992Mo15: 39 Ti produced in Ca(3 He,X) reaction at 110 MeV. Measured β -delayed two-proton sum spectra. Deduced IAS for 39 Sc.

1994B110: ³⁹Ti produced in fragmentation of ⁵⁸Ni beam at 650 MeV/nucleon with a ⁹Be target.

Additional information 1.

2001Gi01 interpreted 2440, 3575 and 3990 groups (lab system) as εp decay to 38 Ca, the 4880 group as $\varepsilon 2p$ decay to 37 K; corresponding proton (sum) line (lab system) in 1992Mo15 is 4750 40.

Since ³⁹Sc is particle unbound, ³⁹Ti decays 100% by delayed proton emission, mostly by one-proton emission. The two-proton decay mode is expected from theoretical predictions but has not been established as yet.

³⁸Ca Levels

E(level) $\frac{J^{\pi}}{0}$ 0^{+} 2212.5 14 2^{+}

 γ (38Ca)

 $\frac{E_{\gamma}}{2212.5 \ 14} \quad \frac{I_{\gamma}^{\dagger}}{28 \ 9} \quad \frac{E_{i}(\text{level})}{2212.5} \quad \frac{J_{i}^{\pi}}{2^{+}} \quad \frac{E_{f}}{0} \quad \frac{J_{f}^{\pi}}{0^{+}}$

Comments

 E_{γ} , I_{γ} : from 2007Do17. The 2212.5 γ is in coin with 3270-keV proton group. However, 2007Do17 do not assign this proton group due to low statistics and lack of detailed analysis.

Delayed Protons (38Ca)

E(p)	$E(^{38}Ca)$	I(p)#	Comments
2504 [†] 26		8 [†] 5	E(p): 2440 25 in lab system.
3270 [‡] 20		7 [‡] 2	The 3270 proton group is seen in coin with 2212.5y. However, 2007Do17 do not assign the proton
			group due to low statistics and lack of detailed analysis.

Continued on next page (footnotes at end of table)

[†] Absolute intensity per 100 decays.

³⁹Ti εp decay (28.5 ms) 2001Gi01,2007Do17 (continued)

Delayed Protons (continued)

E(p)	E(³⁸ Ca)	$I(p)^{\#}$	Comments
3669 [†] 31		6.5 [†] 45	E(p): 3575 30 in lab system.
4095 [†] <i>31</i>		7.3 [†] 45	E(p): 3990 30 in lab system.
5170 [‡] <i>30</i>		11 3	E(p): corresponding group reported by 2001Gi01 is 5008 41 (4880 40 in lab system).

[†] From 2001Gi01. Energies listed by 2001Gi01 are in the lab system. The evaluator have expressed these in the c.m. system. 2007Do17 mention that a weak group may be present with intensity <5%.

[‡] From 2007Do17, energy is in the c.m. system.

[#] Absolute intensity per 100 decays.

39 Ti εp decay (28.5 ms) 2001Gi01,2007Do17

Decay Scheme

Intensities: $I_{(\gamma+ce)}$ per 100 parent decays

